

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Reference

The reference documentation are available for this module:

	Maestro Architecture

	Open API

	Schedulers

	Operations

Tutorials

The following tutorials are available for this module:

	Getting Started Guide

	Configuring Scheduler Autoscaling

	Configuring Events Forwarding

	Development

Assumptions, Dos & Don’ts

Describe common assumptions, or actions that you want your users to avoid. If there are multiple ways to solve problems using your application, you can document here the best options you have identified.

Lessons Learned & Best Practices

You can fill this section with best practices and enrich it as you learn better practices for the use of your application.

Features & Components

Short list of the components, features or elements that the user needs to know to make the best of your application. On this section, you can include any guides and how tos that involve interaction with the UI in RING.

Navigation & How To Guides

Describe any menus and buttons in the user interface not covered in the previous section
Include how users can interact with the features on your interface to get the desired results.

Troubleshooting

Document here any known errors, workarounds for bugs, troubleshooting details, and tips and tricks to avoid common mistakes.

 Maestro Next is a composition of different modules. Internally they are all part of the same code base but could be executed by giving the right arguments to the command line (or to your docker container entry point). E.g. go run main.go start [MODULE_NAME]

Maestro is composed of Management API, Rooms API, Operation Execution Worker, Runtime Watcher Worker, and Metrics Reporter Worker.

Each module has its responsibilities and is divided apart in a way to avoid mixing the execution process. Each module was thought to avoid parallel problems and to give the client more visibility about which Operations are being executed and their respective status.

[image: ../_images/Architecture.jpg]architecture IMAGE

Maestro modules

Note: Maestro currently only supports Kubernetes as Game Rooms runtime system. So Workers interact with them.

Management API

Management API is the module responsible for receiving user requests. It accepts gRPC and HTTP requests and provides several kinds of routes that are aggregated in two services: schedulers service and operations service.

The schedulers service exposes features for managing schedulers, like creating a new scheduler, fetching its information, or updating them.The operations service exposes features for tracking operations and changing their status, like listing operations by status or canceling them.

Management API relies on Redis for retrieving operations and game rooms, and on Postgres for retrieving and persisting schedulers.

[image: ../_images/Architecture-Management-API.jpg]Management API IMAGE

Rooms API

Rooms API is the module that provides an API that must be used by game rooms to sync their status with Maestro. To maestro work properly, it needs to be constantly informed about the status of each game room it manages. Also, if there are forwarders configured for the scheduler, those events are forwarded from Maestro at this module.

Note: The requests that Maestro forwards in the Rooms API are documented in this proto file [https://github.com/topfreegames/protos/blob/master/maestro/grpc/protobuf/events.proto].
Note: Maestro client [https://github.com/topfreegames/maestro-client] could be used to ease the integration of the Game Room with Maestro.

[image: ../_images/Architecture-Rooms-API.jpg]Rooms API IMAGE

Operation Execution Worker

Note: In Maestro a worker is a collection of routines that executes a flow related to one and only one Scheduler each.

Operation Execution Worker is a process that constantly keeps ensuring each active Scheduler will have a thread (execution worker) that executes operations enqueued in the related Scheduler operation queue. So in this way became possible to track the events that happened and change a certain Scheduler in a healthier way.

You could find all operations at Operations section

[image: ../_images/Architecture-Operation-Execution-Worker.jpg]Operation Execution Worker IMAGE

Runtime Watcher Worker

Note: In Maestro a worker is a collection of routines that executes a flow related to one and only one Scheduler each.

Runtime Watcher Worker listens to runtime events related to the Scheduler and reflects the changes in Maestro. Currently, it listens for Game Rooms creation, deletion, and update.

[image: ../_images/Architecture-Runtime-Watcher-Worker.jpg]Runtime Watcher Worker IMAGE

Metrics Reporter Worker

Note: In Maestro a worker is a collection of routines that executes a flow related to one and only one Scheduler each.

From time to time Metrics Reporter Worker watch runtime to report metrics from them, such as the number of game rooms instances that are ready, pending, error, unknown, or terminating status. As well it watches from Game Rooms storage its status that could be ready, pending, error, occupied, terminating, or unready.

This module is optional since you don’t need it for any specific functionalities of the application.

[image: ../_images/Architecture-Metrics-Reporter-Worker.jpg]Metrics Reporter Worker IMAGE

Kubernetes usage

Maestro uses kubernetes for orchestrating game room instances. It uses a unique namespace for each scheduler, and a unique pod for each game room instance.

We use client-go [https://github.com/kubernetes/client-go] for communicating with kubernetes. The Runtime port
is the interface used for managing resources, you can find all of the features we are using for managing k8s resources in it.

The diagram below shows how maestro components interact with kubernetes for managing resources.

flowchart BT
 classDef borderless stroke-width:0px
 classDef darkBlue fill:#00008B, color:#fff
 classDef brightBlue fill:#6082B6, color:#fff
 classDef gray fill:#62524F, color:#fff
 classDef gray2 fill:#4F625B, color:#fff
 subgraph maestroSystem[]
 subgraph k8s[]
 A3[Kubernetes]
 end
 class k8s,A3 brightBlue
 class A3, borderless
 subgraph WORKER[]
 A7[Operation Execution Worker

manage kubernetes resources by creating/deleting/updating pods abnd namespaces]
 end
 class WORKER,A7 brightBlue
 class WORKER,A7 borderless
 WORKER--Create namespace
HTTPS-->k8s
 WORKER--Delete namespace
HTTPS-->k8s
 WORKER--Create pod
HTTPS-->k8s
 WORKER--Delete pod
HTTPS-->k8s
 subgraph RUNTIME_WATCHER[]
 A8[Runtime Watcher

 watch for change events in managed pods]
 end
 class RUNTIME_WATCHER,A8 brightBlue
 class RUNTIME_WATCHER,A8 borderless
 RUNTIME_WATCHER--List/Watch pods
HTTPS-->k8s
 end
 click A3 "/csymapp/mermaid-c4-model/blob/master/AWAComponent.md" "AWA"

Runtime watcher

The runtime watcher component maintains a worker process for each scheduler that keeps watching and processing change
events in pods resources. For doing that, it uses a pods informer [https://pkg.go.dev/k8s.io/client-go/informers],
binding handlers for add, update and delete events for all pods managed by it.

This component is not responsible for updating/creating/deleting
kubernetes resources, all it does is to watch for changes and update its game room instances internal representation using redis.

Operation execution worker

The worker uses kubernetes for managing pods and namespaces. It executes several operations that, alongside other side effects, will need to create, update, and delete namespaces and pods.

Currently, maestro does not check for HostPort conflict while creating new rooms

One important note regarding how maestro creates pods: each new requested game room instance will be assigned to a pseudo-random port to be used as HostPort.

Maestro uses the scheduler PortRange to generate the pseudo-random port. Currently, maestro does not check for HostPort conflict while creating new rooms. The final address
of the game room will be composed of the Node address and the game room container assigned HostPort. That’s the reason why
maestro needs access for reading the Node addresses.

Configuring cluster access

Maestro needs the following permissions for managing resources in a kubernetes cluster:

	nodes: read (we need to use the node address to compose the game room address);

	pods: read, create, update, delete;

	namespace: read, create, update, delete.

Maestro provides two ways for configuring kubernetes cluster access.

Using inCluster mode

Set adapters.runtime.kubernetes.inCluster config value to true or use its env var equivalent, the kubernetes client will be configured
automatically using the same service account of the maestro component running pod.

This mode is recommended to be used when running maestro components in the same cluster
in which the schedulers and rooms will be managed.

Using kubeconfig mode

Populate adapters.runtime.kubernetes.kubeconfig and adapters.runtime.kubernetes.masterUrl configs or use its env var equivalent, the kubernetes client
will be configured using the provided kubeconfig file and master url.

 !!swagger-http https://raw.githubusercontent.com/topfreegames/maestro/main/proto/apidocs.swagger.json!!

What is

Operation is a core concept at Maestro, and it represents executions done in multiple layers of Maestro, a state update, or a configuration change.
Operations can be created by user actions while managing schedulers (e.g. consuming management API), or internally by Maestro to fulfill internal states requirements

Operations are heavily inspired by the Command Design Pattern [https://en.wikipedia.org/wiki/Command_pattern]

Definition and executors

Maestro will have multiple operations, and those will be set using pairs of definitions and executors.
An operation definition consists of the operation parameters.
An operation executor is where the actual operation execution and rollback logic is implemented, and it will receive as input its correlated definition.
So, for example, the CreateSchedulerExecutor will always receive a CreateSchedulerDefinition.

flowchart TD
 subgraph operations [Operations]
 subgraph operation_implementation [Operation Impl.]
 definition(Definition)
 executor(Executor)
 end
 subgraph operation_implementation2 [Operation Impl.]
 definition2(Definition)
 executor2(Executor)
 end
 subgraph operation_implementation3 [Operation Impl.]
 definition3(Definition)
 executor3(Executor)
 end
 ...
 end

Operation Structure

	id: Unique operation identification. Auto-Generated;

	status: Operations status. For reference, see here.

	definitionName: Name of the operation. For reference, see here.

	schedulerName: Name of the scheduler which this operation affects.

	createdAt: Timestamp representing when the operation was enqueued.

	input: Contains the input value for this operation. Each operation has its own input format.
For details, see below.

	executionHistory: Contains logs with detailed info about the operation execution. See below.

id: String
status: String
definitionName: String
schedulerName: String
createdAt: Timestamp
input: Any
executionHistory: ExecutionHistory

Input

	Create Scheduler

scheduler: Scheduler

	Create New Scheduler Version

scheduler: Scheduler

	Switch Scheduler Version

newActiveVersion: Scheduler

	Add Rooms

amount: Integer

	Remove Rooms

amount: Integer

Execution History

createdAt: timestamp
event: String

	createdAt: When did the event happened.

	event: What happened. E.g. “Operation failed because…”.

How does Maestro handle operations

	Each scheduler has 1 operation execution (no operations running in parallel for a scheduler).

	Every operation execution has 1 queue for pending operations.

	When the worker is ready to work on a new operation, it’ll pop from the queue.

	The operation is executed by the worker following the lifecycle described here.

State

An operation can have one of the Status below:

	Pending: When an operation is enqueued to be executed;

	Evicted: When an operation is unknown or should not be executed By Maestro;

	In Progress: Operation is currently being executed;

	Finished: Operation finished; Execution succeeded;

	Error: Operation finished. Execution failed;

	Canceled: Operation was canceled by the user.

State Machine

flowchart TD
 pending(Pending)
 in_progress(In Progress)
 evicted(Evicted)
 finished(Finished)
 canceled(Canceled)
 error(Error)

 pending --> in_progress;
 pending --> evicted;
 in_progress --> finished;
 in_progress --> error;
 in_progress --> canceled;

Lifecycle

flowchart TD
 finish((End))
 created("Created (Pending)")
 evicted(Evicted)
 error(Error)
 finished(Finished)
 canceled(Canceled)
 should_execute{Should Execute?}
 execution_succeeded{Success?}
 err_kind{Error Kind}
 execute[[Execute]]
 rollback[[Rollback]]
 canceled_by_user>Canceled By User]
 created --> should_execute;
 should_execute -- No --> evicted --> finish;
 should_execute -- Yes --> execute;
 execute --> execution_succeeded;
 execute --> canceled_by_user --> rollback;
 execution_succeeded -- Yes --> finished --> finish;
 execution_succeeded -- No --> rollback;
 rollback --> err_kind;
 err_kind -- Canceled --> canceled --> finish;
 err_kind -- Error --> error --> finish

Lease

What is the operation lease

Lease is a mechanism to track the operations’ execution process and check if we can rely on the current/future operation state.

Why Operations have it

Sometimes, an operation might get stuck. It could happen, for example, if the worker crashes during the execution of an operation.
To keep track of operations, we assign each operation a Lease.
This Lease has a TTL (time to live).

When the operation is being executed, this TTL is renewed each time the lease is about to expire while the operation is still in progress.
It’ll be revoked once the operation is finished.

Troubleshooting

If an operation is fetched and the TTL expired (the TTL is in the past), the operation probably got stuck,
and we can’t rely upon its current state, nor guarantee the required side effects of the execution or rollback have succeeded.

If an operation does not have a Lease, it either did not start at all (should be on the queue) or is already finished.
An Active Operation without a Lease is at an invalid state.

Maestro do not have a self-healing routine yet for expired operations.

Operation Lease Lifecycle

flowchart TD
 finish_routine((End))
 start_routine((Start))
 finish((End))

 operation_finished{Op. Finished?}

 to_execute[Operation to Execute]

 grant_lease[[Grant Lease]]
 renew_lease[[Renew Lease]]
 revoke_lease[[Revoke Lease]]

 wait_for_ttl(Wait for TTL)
 execute(Execute Operation)

 to_execute --> grant_lease;
 grant_lease --> renew_lease_routine;
 grant_lease --> execute;
 subgraph renew_lease_routine [ASYNC Renew Lease Routine]
 start_routine --> wait_for_ttl;
 wait_for_ttl --> operation_finished;
 operation_finished -- Yes --> revoke_lease;
 operation_finished -- No --> renew_lease --> wait_for_ttl;
 revoke_lease --> finish_routine;
 end
 renew_lease_routine --> finish;

Available Operations

For more details on how to use Maestro API, see this section [https://topfreegames.github.io/maestro/reference/OpenAPI/].

Create Scheduler

	Accessed through the POST /schedulers endpoint.

	Creates the scheduler structure for receiving rooms;

	The scheduler structure is validated, but the game room is not;

	If operation fails, rollback feature will delete anything created related to scheduler.

Create New Scheduler Version

	Accessed through the POST /schedulers/:schedulerName endpoint.

	Creates a validation room (deleted right after).
If Maestro cannot receive pings (not forwarded) from validation game room, operation fails;

	When this operation finishes successfully, it enqueues the “Switch Active Version”.

	If operation fails rollback routine deletes anything (except for the operation) created related to new version.

Switch Active Version

	Accessed through PUT /schedulers/:schedulerName endpoint.

	If it’s a major change (anything under Scheduler.Spec changed), GRUs are replaced using scheduler maxSurge property;

	If it’s a minor change (Scheduler.Spec haven’t changed), GRUs are not replaced;

Add Rooms

	Accessed through POST /schedulers/:schedulerName/add-rooms endpoint.

	If any room fail on creating, the operation fails and created rooms are deleted on rollback feature;

Remove Rooms

	Accessed through POST /schedulers/:schedulerName/remove-rooms endpoint.

	Remove rooms based on amount;

	Rollback routine does nothing.

What is

Objectively, a Scheduler is a recipe, and contains all the information for creating
game rooms and forwarding rooms information to other services.

Also, it’s the core entity for operating game rooms in
Maestro, since all game rooms are related to a specific scheduler.

A game can have multiple schedulers, and each scheduler can have multiple game rooms up and running.

flowchart TD
 etc1("...")
 etc2("...")
 etc3("...")

 subgraph game [Game]
 subgraph scheduler_1 [Scheduler 1]
 gameRoom1("Game Room (host:port)")
 gameRoom2("Game Room (host:port)")
 etc1
 end
 subgraph scheduler_2 [Scheduler 2]
 gameRoom3("Game Room (host:port)")
 gameRoom4("Game Room (host:port)")
 etc2
 end
 etc3
 end

How to Operate

To directly interact with a Scheduler, the user enqueues operations using the management API.

These operations are responsible for creating a scheduler or newer versions, switching an active version, adding/removing rooms, etc.

Because of that, everything that happens for a Scheduler can be tracked based on history of the operations executed for
that scheduler and the order they were executed.

Versions

A Scheduler have versions, and each time we want to change scheduler properties, we end-up creating a new version to it.

Versions are directly calculated by Maestro, not sent by the client.

The client can only switch the active version based on the versions created by Maestro. To switch to an specific version, see this.

This version can either be a Minor or a Major change.

	Major version: Replace the game rooms in a switch active version event.

	Basically, any change under spec, that are related to the game room directly.

	Minor version: Don’t replace game rooms in a switch active version event.

	Info such as MaxSurge or forwarders, that do not impact the game rooms.

Example

A complete Scheduler looks like this:

 YAML

name: scheduler-test
game: game-test
state: creating
portRange:
 start: 40000
 end: 60000
maxSurge: 30%
spec:
 terminationGracePeriod: '100'
 containers:
 - name: alpine
 image: alpine
 imagePullPolicy: IfNotPresent
 command:
 - /bin/sh
 - '-c'
 - >-
 apk add curl

 Configuring Scheduler Autoscaling

Configuring Scheduler Autoscaling

Prerequisites

	Have a game room container image that communicates with maestro through Maestro’s rooms API

Learning Outcomes

After finishing this tutorial you will understand how:

	to configure autoscaling policies for your scheduler

What is

Autoscaling is an optional feature in which the user can choose and parametrize different autoscaling policies that maestro
will use to automatically scale the number of rooms in the scheduler.

Maestro has an internal process that periodically keeps checking if it needs to create or delete game rooms for the given scheduler,
if autoscaling is not configured or enabled, it will always try to maintain the current number of rooms equal to roomsReplicas scheduler property.
If autoscaling is configured and enabled, it will use the configured autoscaling policy to decide if it needs to scale up (create more rooms),
scale down (delete rooms) or do nothing.

 flowchart TD
 finish((End))
 add_rooms_operation(Enqueue add rooms operation)
 remove_rooms_operation(Enqueue remove rooms)
 use_rooms_replicas(Use rooms replicas to calculate the desired number of rooms)
 autoscaling_enabled{Autoscaling configured and enabled?}
 decide_operation{Compare current number of rooms with the desired amount.}
 use_autoscaling[Use Autoscaling policy to calculate the desired number of rooms coerced in min-max range]
 autoscaling_enabled -- No --> use_rooms_replicas;
 autoscaling_enabled -- Yes --> use_autoscaling;
 use_autoscaling --> decide_operation;
 use_rooms_replicas --> decide_operation;
 decide_operation -- desired > actual --> add_rooms_operation --> finish;
 decide_operation -- desired == actual --> finish;
 decide_operation -- desired < actual --> remove_rooms_operation --> finish;

Currently, the sync interval is configured by environment variable MAESTRO_WORKERS_OPERATIONEXECUTION_HEALTHCONTROLLERINTERVAL.

By default, the scheduler does not have autoscaling configured.

How to configure and enable autoscaling

To get autoscaling working in your scheduler, firstly you need to configure an autoscaling policy and enable it, this autoscaling
configuration resides in the root of the scheduler structure itself.

 YAML version

name: String
game: String
...
autoscaling:
 enabled: true
 min: 1
 max: 10
 policy:
 type: roomOccupancy
 parameters:
 ...
 // Will vary according to the policy type.

 JSON version

{
 "name": "test",
 "game": "multiplayer",
 ...
 "autoscaling": {
 "enabled": true,
 "min": 10,
 "max": 300,
 "policy": {
 "type": "roomOccupancy",
 "parameters": {
 ...
 // Will vary according to the policy type.
 }
 }
 }
}

	enabled [boolean]: A value that can be true or false, indicating if the autoscaling feature is enabled/disabled for the given scheduler. Default: false.

	min [integer]: Minimum number of rooms the scheduler should have, it must be greater than zero. For zero value, disable autoscaling and set “roomsReplicas” to 0.

	max [integer]: Maximum number of rooms the scheduler can have. It must be greater than min, or can be -1 (to have no limit).

	policy [struct] : This field holds information regarding the autoscaling policy that will be used if the autoscaling feature is enabled:

	type [string]: Define the policy type that will be used, must be one of the policy types maestro provides.

	parameters [struct]: This field will contain arbitrary fields that will vary according to the chosen policy type.

Policy Types

Maestro has a set of predefined policy types that can be used to configure the autoscaling, each policy will implement
a specific strategy for calculating the desired number of rooms and will have its configurable parameters.

Room Occupancy Policy

The basic concept of this policy is to scale the scheduler up or down based on the actual room occupancy rate, by defining a “buffer” percentage
of ready rooms that Maestro must keep. The desired number of rooms will be given by the following formula:

desiredNumberOfRooms = ⌈(numberOfOccupiedRooms/ (1- readyTarget))⌉

So basically Maestro will constantly try to maintain a certain percentage of rooms in ready state, by looking at the
actual room occupancy rate (number of rooms in occupied state).

Room Occupancy Policy Parameters

	readyTarget [float]: The percentage (in decimal value) of rooms that Maestro should try to keep in ready state, must be a value between 0.1 and 0.9.

Example

 YAML version

name: String
game: String
...
autoscaling:
 enabled: true
 min: 1
 max: 10
 policy:
 type: roomOccupancy
 parameters:
 roomOccupancy:
 readyTarget: 0.5

 JSON version

{
 "autoscaling": {
 "enabled": true,
 "min": 10,
 "max": 300,
 "policy": {
 "type": "roomOccupancy",
 "parameters": {
 "roomOccupancy": {
 "readyTarget": 0.5
 }
 }
 }
 }
}

Below are some simulated examples of how the room occupancy policy will behave:

Note that the autoscaling decision will always be limited by the min-max values! .

totalRooms	occupiedRooms	readyTarget	desiredNumberOfRooms	autoscalingDecision
:———-:	:————-:	:———–:	:——————–:	:——————-:
100	80	0.5	160	Scale Up: +60
100	50	0.5	100	Do Nothing: 0
100	30	0.5	60	Scale Down: -40
50	40	0.3	58	Scale Up: +8
50	35	0.3	50	Do Nothing: 0
50	10	0.3	15	Scale Down: -35
10	5	0.9	50	Scale Up: +40
10	1	0.9	10	Do Nothing: 0
10	1	0.8	5	Scale Down: -5
5	5	0.1	6	Scale Up: +1
1	1	0.3	2	Scale Up: +1
2	2	0.9	20	Scale Up: +18

 Development

Development

Setting up the environment

Grpc gateway

In order to run make generate with success, you need to have grpc-gateway dependencies installed with the following command:

go install \
 github.com/grpc-ecosystem/grpc-gateway/v2/protoc-gen-grpc-gateway \
 github.com/grpc-ecosystem/grpc-gateway/v2/protoc-gen-openapiv2 \
 google.golang.org/protobuf/cmd/protoc-gen-go \
 google.golang.org/grpc/cmd/protoc-gen-go-grpc

Golang version

The project requires golang version 1.18 or higher.

Building and running

	Run make setup to get all required modules

	Run make generate to generate mocks, protos and wire (dependency injection)

	Run make deps/up to startup service dependencies

	Run make migrate to migrate database with the most updated schema

Running tests

	Run make run/unit-tests to run all unit tests

	Run make run/integration-tests to run all integration tests

	Run make run/e2e-tests to run all E2E tests. NOTE: Currently it is not
possible to run it with the development environment set. This command will
stop the dev dependencies before running.

	Run make lint to run all registered linters

Running locally

To help you get along with Maestro, by the end of this section you should have a scheduler up and running.

Prerequisites

	Golang v1.18+

	Linux/MacOS environment

	Docker

Clone Repository

Clone the repository [https://github.com/topfreegames/maestro] to your favorite folder.

Getting Maestro up and running

For this step, you need docker running on your machine.

WARNING: Ensure using cgroupv1

K3s needs to use the deprecated cgroupv1, to successfully run the project in your machine ensure that your current docker use this version.

In the folder where the project was cloned, simply run:

make maestro/start

This will build and start all containers needed by Maestro, such as databases and maestro-modules. This will also start
all maestro components, including rooms api, management api, runtime watcher, and execution worker.

Because of that, be aware that it might take some time to finish.

Find rooms-api address

To simulate a game room, it’s important to find the address of running rooms-api on the local network.

To do that, with Maestro containers running, simply use:

docker inspect -f '{{range.NetworkSettings.Networks}}{{.Gateway}}{{end}}' {{ROOMS_API_CONTAINER_NAME}}

This command should give you an IP address.
This IP is important because the game rooms will use it to communicate their status.

Create a scheduler

If everything is working as expected now, each Maestro-module is up and running.
Use the command below to create a new scheduler:

Be aware to change the {{ROOMS_API_ADDRESS}} for the one found above.

curl --request POST \
 --url http://localhost:8080/schedulers \
 --header 'Content-Type: application/json' \
 --data '{
	"name": "scheduler-run-local",
	"game": "game-test",
	"state": "creating",
	"portRange": {
		"start": 1,
		"end": 1000
	},
	"maxSurge": "10%",
	"spec": {
		"terminationGracePeriod": "100",
		"containers": [
			{
				"name": "alpine",
				"image": "alpine",
				"imagePullPolicy": "IfNotPresent",
				"command": [
					"sh",
					"-c",
					"apk add curl && while true; do curl --request PUT {{ROOMS_API_ADDRESS}}:8070/scheduler/$MAESTRO_SCHEDULER_NAME/rooms/$MAESTRO_ROOM_ID/ping --data-raw '\''{\"status\": \"ready\",\"timestamp\": \"12312312313\"}'\'' && sleep 5; done"
],
				"environment": [],
				"requests": {
					"memory": "100Mi",
					"cpu": "100m"
				},
				"limits": {
					"memory": "200Mi",
					"cpu": "200m"
				},
				"ports": [
					{
						"name": "port-name",
						"protocol": "tcp",
						"port": 12345
					}
]
			}
],
		"toleration": "",
		"affinity": ""
	},
	"forwarders": []
}'

Congratulations

If you followed the steps above you have Maestro running in your local machine, and with a scheduler to try different operations on it.
Feel free to explore the available endpoints in the API hitting directly the management-API.

If you have any doubts or feedbacks regarding this process, feel free to reach out in Maestro’s GitHub repository [https://github.com/topfreegames/maestro] and open an issue/question.

 Configuring Events Forwarding

Configuring Events Forwarding

Prerequisites

	Have a game room container image that communicates with maestro through Maestro’s rooms API

Learning Outcomes

After finishing this tutorial you will understand how:

	to configure your room (ping) and player events to be forwarded to an external service (e.g. a matchmaking service)

What is

Events forwarding is an optional feature in which every room event or player event is forwarded to an external service.

Through rooms API, Maestro provides several endpoints for receiving events from the game rooms. These events
can be either room events (like room changing state from ready to occupied) or player events (like player joining or leaving the room).
Maestro rely only on room events for managing the game rooms, player events endpoint is designed to be used exclusively with the events forwarding feature,
since maestro does not depend on this information.

Usually Maestro is used with a Matchmaking service, and a matchmaking service generally will need to keep up-to-date with the pool of game rooms that are available or not.
Events forwarding feature exists for facilitating this integration, even being possible to make game rooms communicate with matchmaker directly.

How to configure and enable events forwarder

To get events forwarding working in your scheduler, firstly you need to configure the events forwarder and enable it, this forwarder
configuration resides in the root of the scheduler structure itself.

 YAML version

name: String
game: String
...
forwarders:
 - name: matchmaking
 enable: true
 type: gRPC
 address: 'external-matchmaker.svc.cluster.local:80'
 options:
 timeout: '1000'
 metadata:
 ...
 // Will vary according to the policy type.

 JSON version

{
 "name": "String",
 "game": "String",
 ...
 "forwarders": [
 {
 "name": "matchmaking",
 "enable": true,
 "type": "gRPC",
 "address": "external-matchmaker.svc.cluster.local:80",
 "options": {
 "timeout": "1000",
 "metadata": {
 ...
 // Will vary according to the user needs.
 }
 }
 }
]
}

	name: Name of the forwarder. Used only for reference (visibility and recognition);

	enable: Toggle to easily enable/disable the forwarder;

	type: Type of the forwarder. Right now, only accepts gRPC;

	address: Address used by the scheduler to forward events. E.g. ‘api.example.com:8080’;

	options: Optional parameters.

	timeout: Timeout value for an event to successfully be forwarded;

	metadata: Arbitrary metadata object that can contain any data that will be embedded in all event that is forwarded.

Events Forwarding Types

Currently, Maestro only supports gRPC forwarder type.

GRPC

This event forwarding type uses the GRPCForwarder service proto definition [https://github.com/topfreegames/protos/blob/master/maestro/grpc/protobuf/events.proto]
to forward events, this means that the external service should use gRPC protocol and implement this service to receive events.

 Getting Started Guide

Getting Started Guide

Prerequisites

	Have a game room container image

Learning Outcomes

After finishing this tutorial you will understand how:

	to set up your game room to communicate its health status with maestro

	to configure a new scheduler in maestro with a fixed number of replicas

Configuring your game room

For Maestro to be able to manage your game rooms, you need to ensure that your game room sends a periodic heartbeat to maestro.
This heartbeat is what we call ping, in which the room is able to inform its status (such as ready or occupied) to maestro.

For this, you can use maestro-client [https://github.com/topfreegames/maestro-client] sdk, if you are using unity, or you can call
Maestro rooms API directly using two env vars that are configured in every game room managed by maestro by default.

PUT scheduler/$MAESTRO_SCHEDULER_NAME/rooms/$MAESTRO_ROOM_ID/ping

{
 "status": "ready",
 "timestamp": "12312312313"
}

The status field can be:

	ready: the room is ready to accept players.

	occupied: the room is occupied by one or more matches, and is not ready to accept more players.

	terminating: the room is terminating, and will not accept any new players.

Create a scheduler

Use the command below to create a new scheduler, this will make a POST request for /schedulers endpoint.

You need to change some parameters according to your game room image needs, for further details on all scheduler fields check
the reference:

	image: your game room image.

	game: your game name (a same game can have multiple schedulers).

	name: your scheduler name (usually, the stack name).

	spec.command: any command that is required to run your game room.

	spec.environment: any environment variable required to run your game room.

	spec.ports: any port that must be exposed for clients to connect to the game room

curl --request POST \
 --url https://<maestro-url>/schedulers \
 --header 'Content-Type: application/json' \
 --header "Authorization: Basic <user:pass in base64>" \
 --data '{
	"name": "<your-scheduler-name-here>",
	"game": "<your-game-name-here>",
 "roomsReplicas": 1,
	"portRange": {
 "start": 20000,
 "end": 21000
	},
	"maxSurge": "10%",
	"spec": {
 "terminationGracePeriod": "100",
 "containers": [
 {
 "name": "game-container",
 "image": "<your-game-image-here>",
 "imagePullPolicy": "IfNotPresent",
 "command": [
 <required-commands-for-game-image>
 "sh example.sh"
],
 "environment": [
 <required-commands-for-game-image>
 {
 "name": "EXAMPLE_NAME",
 "value": "EXAMPLE_VALUE"
 }
],
 "requests": {
 "memory": "100Mi",
 "cpu": "100m"
 },
 "limits": {
 "memory": "200Mi",
 "cpu": "200m"
 },
 "ports": [
 {
 "name": "port-name",
 "protocol": "tcp",
 "port": 12345
 }
]
 }
]
	},
	"forwarders": []
}'

After running this command, a scheduler will be created with 1 game room replica.

Then you can use the following command to get the scheduler details such as how many rooms are ready or occupied:

curl --location --request GET "<maestro-url>/schedulers/info?game=<your-game-name-here>" \
 --header "Accept: application/json" \
 --header "Authorization: Basic <user:pass in base64>"

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_images/Architecture-Rooms-API.jpg
Shared Storages

Rooms API (Internal) (1 - N)

;- {REST} Ping

--“GRPC Maestro client Player Event

‘GRPC e

arg g
Oy, %om g,
rd py, ayer Evvent
ent

D REEEEEESS T Room Event ------

Maestro's managed
game rooms

Maestro
client

‘GRP

Sy

External
Matchmaking
System

_images/Architecture-Runtime-Watcher-Worker.jpg
Shared Storages

~
Runtime Watcher (1-N) R
Workers Manager - Runtime
Watcher
Runtime Runtime Runtime
Watcher Watcher Watcher
L) ¥ E
Sy o5,
Pods Informar Pods Informer Pods Informer oy 20, .
st + wateh) st + watch) st + watch) ® % Runtime -
¥ Kubernetes API

> (Using Go client)

_images/Architecture-Metrics-Reporter-Worker.jpg
Metrics Reporter (1-1)

Workers Manager - Metrics
Reporter

T o

Scheduler 1 Scheduler 2 Scheduler N

Metrics Metrics Metrics
Reporter Reporter P Reporter
Worker Worker Worker

Shared Storages

_images/Architecture-Operation-Execution-Worker.jpg
Shared Storages

®| (sl

Runtime -
Kubernetes API
(Using Go client)

Operation Execution Worker (1-1)

Workers Manager - Operation
Execution

Operation Operation
Execution Execution
Worker Worker

Operation
Execution
Worker

L) L)

T

Manage Namespaces Pencing Operations pendingOperains [|
and Pods Quese() Quese

Pending Operations

Queve)

_images/Architecture.jpg
